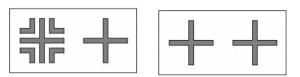
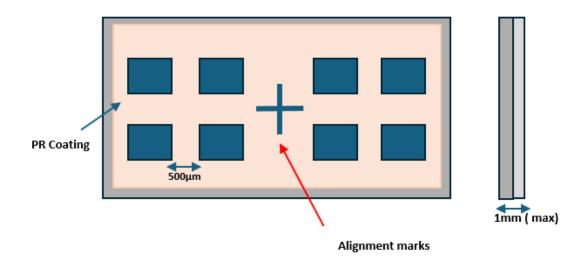


Indian Institute of Science


Packaging and System Facility (PASF)

Packaging and Design Services Capabilities

1. Wafer Dicing


1.1 Automatic Dicing Saw

- i. Wafer/sample size can handle from 2 cm to 6-inch wafers.
- ii. Capable of performing both full cuts and half cuts.
- iii. Sample types: silicon wafers, ITO, STO, LNO, glass wafers and bonded wafers (Si on Si and glass on Si).
- iv. Maximum wafer/sample thickness: 1 mm.
- v. Minimum dicing sample size: 2 mm × 2 mm.
- vi. Minimum saw street between devices: 500 μm (no metallization on saw street).
- vii. Device placement on the wafer/sample must follow a uniform index.
- viii. Wafer/samples with released structures are not acceptable.
- ix. Alignment marks are mandatory on the wafer/sample.

x. The dicing side of the sample must be coated with PR (photoresist) material (maximum 1μ m thick).

Figure1: Wafer Profile for Automatic Dicing

CONST

CENTRE FOR NANO SCIENCE AND ENGINEERING (CeNSE)

Indian Institute of Science

1.2 MTI Precision CNC Dicing machine

- i. Wafer/sample size can range from 2 cm to 3-inch wafers.
- ii. Allowed only fresh/unprocessed wafers.
- iii. Wafer/sample types: silicon wafers, glass wafers, ceramics and sapphires.
- iv. Maximum wafer/sample thickness: 3 mm.
- v. Minimum dicing sample size: 2 mm × 2 mm.
- vi. Minimum cut line width between devices: 500 µm (without metallization).
- vii. Device placement on the wafer/sample must follow a uniform index
- viii. Samples with released structures are not acceptable. (Patterned wafers are not allowed)
- ix. Alignment marks are not a mandatory on the dicing sample.
- x. The dicing side of the sample must be coated with PR (photoresist) material (maximum 1μ m thick).

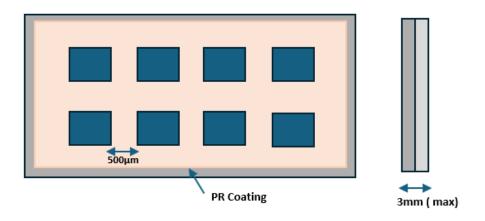


Figure 2: Wafer Profile for Manual Dicing

2. Wire bonding

2.1 Die attachment

- i. User should provide the package (PCB with ENIG/ENPIG finish, Chip carrier, TO)
- ii. Epoxy available: (Curing Temperature as per data sheet)

H70E: Thermally conductive

H20E: Thermally and electrically conductive

H70E2: Thermally conductive

iii. Process type - manual

CENSI

CENTRE FOR NANO SCIENCE AND ENGINEERING (CeNSE)

Indian Institute of Science

2.2 Wire bonder

- i. Diced devices are recommended, or devices that can fit within the package dimensions.
- ii. Bonding Type & Material:
 - Wedge bonding: 25 μm Au wire, 33 μm Al wire
 - Ball bonding: 25 μm Au wire
- iii. Minimum Bond Pad Dimension: 100 μm × 100 μm
- iv. Minimum Bond Pad Pitch: 200 μm
- v. Device Metallization: Al, Cr/Au, Ti/Pt or Ti/Au (seed layer thickness > 10 nm and metallization > 100 nm)
- vi. Bond pad surface must be free from contamination, photoresist (PR) and oxide layers.

3. Parylene Deposition

- i. Substrates allowed ranging from small samples up to 4-inch wafers.
- ii. Samples: silicon wafers, glass, ceramics, metals, MEMS devices, electronic components, medical implants, polymers, plastics, and optical parts.
- iii. Parylene Type: Parylene C, Parylene N
- iv. Capable of depositing thickness: 500nm to $5\mu m$.
- v. Provides uniform coatings on substrates of various shapes and sizes, including non-flat samples, facilitated by a rotating sample holder.
- vi. Deposition pressure approximately 15mTorr, enabling the formation of high-quality conformal coatings.

4. Hot air Oven

- i. Samples allowed for baking/curing: Silicon, glassware, metal tools, electronic components, polymers, powders, and small mechanical parts.
- ii. Internal Dimension: 30cm × 30cm × 30cm
- iii. Temperature range: 150°C to 180°C
- iv. Temperature uniformity: ± 3°C
- v. Ramp Rate: 3°C/min

CENSE

CENTRE FOR NANO SCIENCE AND ENGINEERING (CeNSE)

Indian Institute of Science

5. Vacuum Oven

i. Samples allowed for baking/curing: Silicon, glassware, metal tools, electronic components, polymers, powders, and small mechanical parts.

ii. Internal Dimension: 35cm × 35cm × 35cm

iii. Vacuum Range: 5mTorr

iv. Temperature range: 25°C to 250°C

v. Temperature uniformity: ± 3°C

vi. Ramp Rate: 2°C/min

6. High Power Plasma Cleaner

 Samples allowed for surface cleaning /Bonding: silicon wafers, glass, metals, polymers, ceramics, MEMS devices, and PDMS

ii. Sample size: < 65 mm

iii. Adjustable RF power: Low (8W), Medium (14W), High (40W)

iv. Vacuum range: 5mTorr

v. Gas exposure: N₂, Ar, O₂

vi. Gas Flow meter range: 50 mL/min

vii. Samples with greasy residues, oily films, unbaked resists or uncured polymers are not allowed

viii. Two slots for gas flow meters.

7. DC Probe station

i. Samples allowed with metal layer: Silicon wafers, Glass and MEMS devices

ii. Sample size: < 50 mm

iii. Probing Pad size: 100 μm

iv. Microscope Magnification: 10x - 50x

v. Micro Positioners: 6 units with magnet on/off bases

vi. Measurement Capabilities: Resistance, Inductance, Capacitance

vii. Probe tip size: 50 μm

CENSE

CENTRE FOR NANO SCIENCE AND ENGINEERING (CeNSE)

Indian Institute of Science

8. Ultra Probe sonication

i. Samples allowed for dispersion: RGO, CNT, Graphene, Nanoparticles

ii. Frequency Range: Typically, 20-40 kHz

iii. Probe Tip size: 0.3mm and 18mm

iv. Power Output: Ranges from 50 W to 500 W RMS

v. Mode of operation: Continuous /Pulse Mode

vi. Probe/Tip Material: Titanium due to its durability and chemical resistance

vii. Tab/PC operation.

9. Centrifuge system

 Samples allowed for separation and concentration of nanoparticles, carbon nanotubes (CNTs), graphene.

ii. Maximum Speed: 10,000 RPM

iii. Speed Accuracy: ±100 RPM

iv. Maximum Tube Size: 100 mL

v. No. of. tube slot: 8 no's

10. Chemical Wet bench

i. Samples allowed for cleaning: Silicon, glass, PCB, Metal components

ii. Allowed process chemicals: IPA and Acetone

iii. Support for sample dehydration and preheating processes.

iv. Ultrasonic bath cleaning for effective removal of contaminants.

v. Equipped with exhaust ventilation, chemical-resistant surfaces and splash guards for safe operation.

vi. Equipped with DI water, N₂ gas and CDA lines for sample cleaning.

11. Fibre laser marking tool

i. Materials allowed: Metals, Silicon wafers, Plastic, PCB

ii. Process: Metal shadow mask, Text engraving, Pattern transfer and QR code.

iii. Laser type: Fibre Laser (20W), 1064 nm, class 1 safety ring

iv. Marking Area: 100 × 100 mm

v. Minimum line width: 0.05mm

vi. Marking Depth: ≤ 0.3 mm

vii. Supported File Formats: DXF, BMP, JPG, DWG and EZD.

CENSE

CENTRE FOR NANO SCIENCE AND ENGINEERING (CeNSE)

Indian Institute of Science

12. Helium leak tester

- i. Minimum Detectable Leak Rate: Helium (vacuum mode): $< 5 \times 10^{-12}$ mbar·l/s
- ii. Test method: Spray Method
- iii. Measurement Range: 1×10^{-12} to 1×10^{-1} mbar·l/s
- iv. Helium Pumping Speed (vacuum mode): 2.5 l/s
- v. Flange Type: DN 25 ISO-KF
- vi. Suitable Materials for Leak Testing: Metals: Stainless steel, aluminium, copper, titanium

13. Pneumatic Pressure Calibrator/controller

- i. Pressure range: up to 75 bar
- ii. Mode of calibration: Relative, Absolute
- iii. Accuracy: ±0.015% of reading
- iv. Required test port end fitting (Male): 1/4" BSP, M10X1, M14 x1.5
- v. Test Medium N₂ gas

14. Hydraulic Pressure Calibrator

- i. Pressure range:1 to 1000 bar
- ii. Mode of calibration: Relative/Gauge
- iii. Accuracy: ±0.015% of reading
- iv. Required test port end fitting (Male): 1/8, 1/4, 3/8 and ½ NPT or BSP
- v. Test Medium Hydraulic oil

15. Pressure Cycle Tester

- i. Pressure range: up to 10 bar
- ii. Mode of calibration: Relative, Absolute
- iii. Test Medium: Compressed Air, N₂ gas
- iv. Required test port end fitting (Male): 1/2" BSP, M10X, M14 x1.5
- v. Programmable total cycles: up to 10,000
- vi. Adjustable pressure hold time

CENTRE FOR NANO SCIENCE AND ENGINEERING (CeNSE)

Indian Institute of Science

16. Dynamic Pressure test (Shock Tube)

i. Shock wave pressure: 1 to 10 bar

ii. Test method: Diaphragm rupture method, Solenoid valve control method

iii. Test medium: Compressed Air, N₂ gas

iv. Required test port end fitting (Male): ¼" BSP, M10X1, M14 x1.5

17. Climatic Test Chamber

i. Temperature Range: -60°C to +170°C

ii. Humidity Range: 10% to 90% RH (at +10°C to +95°C)

iii. Internal Dimensions: 548 × 460 × 447 mm

iv. Cooling Rate: 2.8°C/min (from +170°C to -60°C)

v. Heating Rate: 3.2°C/min (from -60°C to +160°C)

vi. Temperature Fluctuation: ±1°C

vii. Relative Humidity Fluctuation: ±3%

viii. Programmable test profiles for automated sequences

ix. Fed through access port (Dia 50mm) for taking electrical connection

18. Soldering and Desoldering workstation

i. Process type: Manual hand soldering and desoldering

ii. PCB: Rigid, Flex

iii. PCB board dimensions: 80 mm x 80mm

iv. Small PCBs are preferred in panel

v. Component Type: SMD (0603,0805,1206), QFN, SSOP, SOIC

vi. Support only for proto unit test and development units.

vii. A stencil is recommended for panels or larger PCBs

19. FDM _ 3D printing

i. Print Filament Material: PLA, ABS

ii. Build part dimension: 180mm x 180mm x 180mm

iii. Layer resolution: 0.16mm to 0.4mm

iv. Required file format: STL file

CENTRE FOR NANO SCIENCE AND ENGINEERING (CeNSE)

Indian Institute of Science

20. Embedded Design Services

Hardware design:

Project architecture design, schematic design (Analog, digital, mixed signals, power management), component selection, Custom board design, PCB layout-multi layer, multi-board design, impedance matching, differential pair analysis, and prototyping.

• Firmware development:

Low-level software development for microcontroller (STM32, Analog devices, TI, ATmega) systems (Single, dual-core, multi-controller designs). Device drivers – SPI, I2C, UART, RS232, RS485, RTOS.

• Software development:

Embedded software development using Python, Visual Code Studio, and front-end development.

System integration:

Seamless hardware, firmware, software, and mechanical components integration.

Testing and validation:

Rigorous testing procedures to ensure product quality and reliability. Active and passive burn-in testing, temperature cycling, and humidity testing.